The main topic of this work is the development and validation of a simplified approach for the dynamic analysis of a Gas Turbine Combined Cycle (GTCC), with a particular focus on start-up procedure and associated mechanical stresses on the steam turbine (ST). The currently deregulated energy market led GTCC to undergo frequent startups, a condition often not considered during plant design. Moreover, the time required for the start-up is crucial under an economical viewpoint, though it is constrained by mechanical stresses imposed to thick components by thermal gradients. The framework proposed in this work aims to improve the accessibility to simulation software by applying commonly used office suite – Microsoft Excel/Visual Basic – with acceptable reduction in accuracy. Simplicity of model allow fast computation and its exploitation can be pursued by non-qualified plant operators. The obtained tool can be than adopted to support decision process during plant operations. The developed tool has been validated for a hot start-up against field measurements supplied by Tirreno Power S.p.A. Italy. Data are recorded through control and monitoring sensors of a 390 MW multi-shaft combined cycle based on the GT AEN94.3 A4 frame, but the results can be easily generalized to other layouts. Simulation result and stress evaluations around the steam turbine (ST) rotor show good agreement with experimental data.

Gas turbine combined cycle start-up and stress evaluation: A simplified dynamic approach

Rossi, Iacopo;Sorce, Alessandro;Traverso, Alberto
2017

Abstract

The main topic of this work is the development and validation of a simplified approach for the dynamic analysis of a Gas Turbine Combined Cycle (GTCC), with a particular focus on start-up procedure and associated mechanical stresses on the steam turbine (ST). The currently deregulated energy market led GTCC to undergo frequent startups, a condition often not considered during plant design. Moreover, the time required for the start-up is crucial under an economical viewpoint, though it is constrained by mechanical stresses imposed to thick components by thermal gradients. The framework proposed in this work aims to improve the accessibility to simulation software by applying commonly used office suite – Microsoft Excel/Visual Basic – with acceptable reduction in accuracy. Simplicity of model allow fast computation and its exploitation can be pursued by non-qualified plant operators. The obtained tool can be than adopted to support decision process during plant operations. The developed tool has been validated for a hot start-up against field measurements supplied by Tirreno Power S.p.A. Italy. Data are recorded through control and monitoring sensors of a 390 MW multi-shaft combined cycle based on the GT AEN94.3 A4 frame, but the results can be easily generalized to other layouts. Simulation result and stress evaluations around the steam turbine (ST) rotor show good agreement with experimental data.
File in questo prodotto:
File Dimensione Formato  
PostPrint.pdf

accesso aperto

Descrizione: Post Print Articolo Completo
Tipologia: Documento in Post-print
Dimensione 768.97 kB
Formato Adobe PDF
768.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/891379
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 35
social impact