Coupling a solid oxide fuel cell (SOFC) with a gas turbine provides a substantial increment in system efficiency compared to the separate technologies, which can potentially introduce economic benefits and favor an early market penetration of fuel cells. Currently, the economic viability of such systems is limited by fuel cell short lifetime due to a progressive performance degradation that leads to cell failure. Mitigating these phenomena would have a significant impact on system economic feasibility. In this study, the lifetime of a standalone, atmospheric SOFC system was compared to a pressurized SOFC gas turbine hybrid and an economic analysis was performed. In both cases, the power production was required to be constant over time, with significantly different results for the two systems in terms of fuel cell operating life, system efficiency, and economic return. In the hybrid system, an extended fuel cell lifetime is achieved while maintaining high system efficiency and improving economic performance. In this work, the optimal power density was determined for the standalone fuel cell in order to have the best economic performance. Nevertheless, the hybrid system showed better economic performance, and it was less affected by the stack cost.

Gas turbine advanced power systems to improve solid oxide fuel cell economic viability

V. Zaccaria;A. Traverso
2017

Abstract

Coupling a solid oxide fuel cell (SOFC) with a gas turbine provides a substantial increment in system efficiency compared to the separate technologies, which can potentially introduce economic benefits and favor an early market penetration of fuel cells. Currently, the economic viability of such systems is limited by fuel cell short lifetime due to a progressive performance degradation that leads to cell failure. Mitigating these phenomena would have a significant impact on system economic feasibility. In this study, the lifetime of a standalone, atmospheric SOFC system was compared to a pressurized SOFC gas turbine hybrid and an economic analysis was performed. In both cases, the power production was required to be constant over time, with significantly different results for the two systems in terms of fuel cell operating life, system efficiency, and economic return. In the hybrid system, an extended fuel cell lifetime is achieved while maintaining high system efficiency and improving economic performance. In this work, the optimal power density was determined for the standalone fuel cell in order to have the best economic performance. Nevertheless, the hybrid system showed better economic performance, and it was less affected by the stack cost.
File in questo prodotto:
File Dimensione Formato  
Gpps_U96IED.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/890530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact