We propose and analyze a regularization approach for structured prediction problems. We characterize a large class of loss functions that allows to naturally embed structured outputs in a linear space. We exploit this fact to design learning algorithms using a surrogate loss approach and regularization techniques. We prove universal consistency and finite sample bounds characterizing the generalization properties of the proposed method. Experimental results are provided to demonstrate the practical usefulness of the proposed approach.
Titolo: | A Consistent Regularization Approach for Structured Prediction | |
Autori: | ||
Data di pubblicazione: | 2016 | |
Handle: | http://hdl.handle.net/11567/888679 | |
Appare nelle tipologie: | 04.01 - Contributo in atti di convegno |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
A Consistent Regularization.pdf | Documento in Post-print | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.