The development of reliable and robust visual recognition systems is a main challenge towards the deployment of autonomous robotic agents in unconstrained environments. Learning to recognize objects requires image representations that are discriminative to relevant information while being invariant to nuisances, such as scaling, rotations, light and background changes, and so forth. Deep Convolutional Neural Networks can learn such representations from large webcollected image datasets and a natural question is how these systems can be best adapted to the robotics context where little supervision is often available. In this work, we investigate different training strategies for deep architectures on a new dataset collected in a real-world robotic setting. In particular we show how deep networks can be tuned to improve invariance and discriminability properties and perform object identification tasks with minimal supervision.

Object identification from few examples by improving the invariance of a Deep Convolutional Neural Network

Giulia Pasquale;Carlo Ciliberto;Lorenzo Rosasco;
2016-01-01

Abstract

The development of reliable and robust visual recognition systems is a main challenge towards the deployment of autonomous robotic agents in unconstrained environments. Learning to recognize objects requires image representations that are discriminative to relevant information while being invariant to nuisances, such as scaling, rotations, light and background changes, and so forth. Deep Convolutional Neural Networks can learn such representations from large webcollected image datasets and a natural question is how these systems can be best adapted to the robotics context where little supervision is often available. In this work, we investigate different training strategies for deep architectures on a new dataset collected in a real-world robotic setting. In particular we show how deep networks can be tuned to improve invariance and discriminability properties and perform object identification tasks with minimal supervision.
2016
978-1-5090-3762-9
File in questo prodotto:
File Dimensione Formato  
Object Identification.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/888661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact