The present phase of Machine Learning is characterized by supervised learning algorithms relying on large sets of labeled examples (. n→∞). The next phase is likely to focus on algorithms capable of learning from very few labeled examples (. n→1), like humans seem able to do. We propose an approach to this problem and describe the underlying theory, based on the unsupervised, automatic learning of a "good" representation for supervised learning, characterized by small sample complexity. We consider the case of visual object recognition, though the theory also applies to other domains like speech. The starting point is the conjecture, proved in specific cases, that image representations which are invariant to translation, scaling and other transformations can considerably reduce the sample complexity of learning. We prove that an invariant and selective signature can be computed for each image or image patch: the invariance can be exact in the case of group transformations and approximate under non-group transformations. A module performing filtering and pooling, like the simple and complex cells described by Hubel and Wiesel, can compute such signature. The theory offers novel unsupervised learning algorithms for "deep" architectures for image and speech recognition. We conjecture that the main computational goal of the ventral stream of visual cortex is to provide a hierarchical representation of new objects/images which is invariant to transformations, stable, and selective for recognition-and show how this representation may be continuously learned in an unsupervised way during development and visual experience

Unsupervised learning of invariant representations

Lorenzo Rosasco;
2016

Abstract

The present phase of Machine Learning is characterized by supervised learning algorithms relying on large sets of labeled examples (. n→∞). The next phase is likely to focus on algorithms capable of learning from very few labeled examples (. n→1), like humans seem able to do. We propose an approach to this problem and describe the underlying theory, based on the unsupervised, automatic learning of a "good" representation for supervised learning, characterized by small sample complexity. We consider the case of visual object recognition, though the theory also applies to other domains like speech. The starting point is the conjecture, proved in specific cases, that image representations which are invariant to translation, scaling and other transformations can considerably reduce the sample complexity of learning. We prove that an invariant and selective signature can be computed for each image or image patch: the invariance can be exact in the case of group transformations and approximate under non-group transformations. A module performing filtering and pooling, like the simple and complex cells described by Hubel and Wiesel, can compute such signature. The theory offers novel unsupervised learning algorithms for "deep" architectures for image and speech recognition. We conjecture that the main computational goal of the ventral stream of visual cortex is to provide a hierarchical representation of new objects/images which is invariant to transformations, stable, and selective for recognition-and show how this representation may be continuously learned in an unsupervised way during development and visual experience
File in questo prodotto:
File Dimensione Formato  
11567-888615_bis.pdf

accesso aperto

Descrizione: Articolo principale in pre-print
Tipologia: Documento in Pre-print
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/888615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 28
social impact