In analyzing pool fires and the potential for domino effects, the most important aspects to be addressed on the basis of a proper consequence analysis are the evaluation of thermal radiation, the issues of interplant spacing, the employees’ safety zones and fire wall specifications. Even if scientific literature on pool-fire is sparse and modeling is well developed, the usual approach considers circular geometry, pseudo steady-state conditions, uniform flame temperature, cylindrical/conical flame shape with height depending on pool diameter. The specific analysis of rather complicated situations (partial confinement, irregular shapes, complex kinetics, heavy hydrocarbon fire, unsteady-state) usually requires the use of sophisticated integral models and/or time consuming CFD calculations, but when conservative results are enough, analytical models can be more useful especially in hazard assessment. We propose a modelling of a pool fire of a multi-component hydrocarbon mixture, under semi-confined geometry. The physical model of the pool is solved to provide a description of a variable heat emitting flame area, as a function of the vertical flame axis, thus representing a peculiar novelty of the approach. Starting from a real accident in a downstream oil industry involving pool fire of a heavy liquid HC mixture and domino effect, the application to an industrial case study is presented, in order to evidence the effective potentialities of the method.

A short-cut analytical model of hydrocarbon pool fire of different geometries, with enhanced view factor evaluation

Palazzi, Emilio;Reverberi, Andrea P.;Fabiano, Bruno
2017-01-01

Abstract

In analyzing pool fires and the potential for domino effects, the most important aspects to be addressed on the basis of a proper consequence analysis are the evaluation of thermal radiation, the issues of interplant spacing, the employees’ safety zones and fire wall specifications. Even if scientific literature on pool-fire is sparse and modeling is well developed, the usual approach considers circular geometry, pseudo steady-state conditions, uniform flame temperature, cylindrical/conical flame shape with height depending on pool diameter. The specific analysis of rather complicated situations (partial confinement, irregular shapes, complex kinetics, heavy hydrocarbon fire, unsteady-state) usually requires the use of sophisticated integral models and/or time consuming CFD calculations, but when conservative results are enough, analytical models can be more useful especially in hazard assessment. We propose a modelling of a pool fire of a multi-component hydrocarbon mixture, under semi-confined geometry. The physical model of the pool is solved to provide a description of a variable heat emitting flame area, as a function of the vertical flame axis, thus representing a peculiar novelty of the approach. Starting from a real accident in a downstream oil industry involving pool fire of a heavy liquid HC mixture and domino effect, the application to an industrial case study is presented, in order to evidence the effective potentialities of the method.
File in questo prodotto:
File Dimensione Formato  
PSEP-PoolP.pdf

accesso aperto

Descrizione: Full paper
Tipologia: Documento in Post-print
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/888282
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 29
social impact