Energy recovery from Natural Gas (NG) distribution networks is a promising strategy in order to pursue energy sustainability in urban areas. The NG pressure reduction process, normally achieved by means of conventional throttling valves, can be upgraded by implementing turbo expander technology, which allows recovery of energy from the NG pressure drop. As commonly known, in this process the NG must be preheated in order to avoid methane-hydrate formation. The preheating temperature represents a key parameter of the process, on which depends the possibility of integrating low enthalpy heat sources into the system and of exploiting more efficient technologies and renewable energies as well. In this work, the possibility of integrating a pressure reduction station with low temperature heat sources is studied. In particular, a novel plant configuration consisting of a two-stage expansion system is presented and its energy performances are investigated by means of numerical dynamic simulations. The risk of formation of methane hydrate is assessed for different operating conditions and for transient behavior. Finally, the energy efficiency of PRSs with high and low temperature configuration is compared, showing how the two stage expansion can achieve higher energy performance and be effectively integrated with low enthalpy heat sources.

Energy recovery from natural gas pressure reduction stations: Integration with low temperature heat sources

Borelli, Davide;Devia, Francesco;Lo Cascio, Ermanno;Schenone, Corrado
2018-01-01

Abstract

Energy recovery from Natural Gas (NG) distribution networks is a promising strategy in order to pursue energy sustainability in urban areas. The NG pressure reduction process, normally achieved by means of conventional throttling valves, can be upgraded by implementing turbo expander technology, which allows recovery of energy from the NG pressure drop. As commonly known, in this process the NG must be preheated in order to avoid methane-hydrate formation. The preheating temperature represents a key parameter of the process, on which depends the possibility of integrating low enthalpy heat sources into the system and of exploiting more efficient technologies and renewable energies as well. In this work, the possibility of integrating a pressure reduction station with low temperature heat sources is studied. In particular, a novel plant configuration consisting of a two-stage expansion system is presented and its energy performances are investigated by means of numerical dynamic simulations. The risk of formation of methane hydrate is assessed for different operating conditions and for transient behavior. Finally, the energy efficiency of PRSs with high and low temperature configuration is compared, showing how the two stage expansion can achieve higher energy performance and be effectively integrated with low enthalpy heat sources.
File in questo prodotto:
File Dimensione Formato  
Proof_ECM.pdf

accesso aperto

Descrizione: Preprint
Tipologia: Documento in Pre-print
Dimensione 3.4 MB
Formato Adobe PDF
3.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/887363
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 42
social impact