Phase change materials (PCMs) are used in novel thermal insulating materials in order to exploit their high apparent thermal capacity, which is particularly interesting for buildings with moderate thermal inertia because PCMs have a high potential for CO2 reduction in lightweight buildings and their energy consumption as well as for increasing the thermal comfort of the inhabitants. In addition, one of the most promising applications of PCMs is embedding them directly in the insulation layers of a lightweight wall. In fact, due to their apparent thermal capacity, light insulators with embedded PCM particles have good performances in smoothing and shaving of thermal peak loads. Furthermore, in some climatic conditions, they can act as thermal storages by reducing thermal loads in buildings. Many sectors of evidence in the literature indicate that it is necessary to use a hysteresis model with two different curves of specific heat versus melting and solidification to assess the transient thermal performance of PCMs embedded precisely in an insulation layer. The main aim of this research is to develop a detailed dynamic model in order to calculate the effects of PCMs in insulation layers of lightweight walls. In this paper, the results of some actions, used to improve the effectiveness of the models, are investigated. In particular they are the adoption of two distinct cp curves, which improves the accuracy of dynamic simulations and, hence, allows the development of the model using a smaller number of points and a larger time step. Several experimental tests validate the numerical model. Furthermore, this paper presents the way in which the position of the PCM insulation layer, in a typical wallboard, affects the temperature and heat flux, inside each layer, in transient conditions. The results show that, in the case evaluated, the maximum reduction of heat consumption, of about 15%, was obtained when PCMs are located in positions three and four, which are approximately in the middle of the wall. In addition, this specific kind of insulation layer generates a delay of the maximum heat flux that is of about two hours.

Numerical and experimental investigation of an insulation layer with phase change materials (PCMs)

Fateh, Amirreza;Devia, Francesco
2017

Abstract

Phase change materials (PCMs) are used in novel thermal insulating materials in order to exploit their high apparent thermal capacity, which is particularly interesting for buildings with moderate thermal inertia because PCMs have a high potential for CO2 reduction in lightweight buildings and their energy consumption as well as for increasing the thermal comfort of the inhabitants. In addition, one of the most promising applications of PCMs is embedding them directly in the insulation layers of a lightweight wall. In fact, due to their apparent thermal capacity, light insulators with embedded PCM particles have good performances in smoothing and shaving of thermal peak loads. Furthermore, in some climatic conditions, they can act as thermal storages by reducing thermal loads in buildings. Many sectors of evidence in the literature indicate that it is necessary to use a hysteresis model with two different curves of specific heat versus melting and solidification to assess the transient thermal performance of PCMs embedded precisely in an insulation layer. The main aim of this research is to develop a detailed dynamic model in order to calculate the effects of PCMs in insulation layers of lightweight walls. In this paper, the results of some actions, used to improve the effectiveness of the models, are investigated. In particular they are the adoption of two distinct cp curves, which improves the accuracy of dynamic simulations and, hence, allows the development of the model using a smaller number of points and a larger time step. Several experimental tests validate the numerical model. Furthermore, this paper presents the way in which the position of the PCM insulation layer, in a typical wallboard, affects the temperature and heat flux, inside each layer, in transient conditions. The results show that, in the case evaluated, the maximum reduction of heat consumption, of about 15%, was obtained when PCMs are located in positions three and four, which are approximately in the middle of the wall. In addition, this specific kind of insulation layer generates a delay of the maximum heat flux that is of about two hours.
File in questo prodotto:
File Dimensione Formato  
ViewPageProof_ENB_7836-2_Small.pdf

non disponibili

Descrizione: Uncorrected Proof
Tipologia: Documento in Post-print
Dimensione 384.71 kB
Formato Adobe PDF
384.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
published paper.pdf

solo utenti autorizzati

Descrizione: Paper
Tipologia: Documento in versione editoriale
Dimensione 3.16 MB
Formato Adobe PDF
3.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/882366
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 49
social impact