We report a time-resolved study of the relaxation dynamics of Al films excited by ultrashort intense free-electron laser (FEL) extreme ultraviolet pulses. The system response was measured through a pump-probe detection scheme, in which an intense FEL pulse tuned around the Al L2,3 edge (72.5 eV) acted as the pump, while a time-delayed ultrafast pulse probed the near-infrared (NIR) reflectivity of the Al film. Remarkably, following the intense FEL excitation, the reflectivity of the film exhibited no detectable variation for hundreds of femtoseconds. Following this latency time, sizable reflectivity changes were observed. Exploiting recent theoretical calculations of the EUV-excited electron dynamics [N. Medvedev, Phys. Rev. Lett. 107, 165003 (2011)PRLTAO0031-900710.1103/PhysRevLett.107.165003], the delayed NIR-reflectivity evolution is interpreted invoking the formation of very-long-living nonthermal hot electron distributions in Al after exposure to intense EUV pulses. Our data represent the first evidence in the time domain of such an intriguing behavior.

Long-lived nonthermal electron distribution in aluminum excited by femtosecond extreme ultraviolet radiation

Bisio, Francesco;MAGNOZZI, MICHELE;Canepa, Maurizio
2017-01-01

Abstract

We report a time-resolved study of the relaxation dynamics of Al films excited by ultrashort intense free-electron laser (FEL) extreme ultraviolet pulses. The system response was measured through a pump-probe detection scheme, in which an intense FEL pulse tuned around the Al L2,3 edge (72.5 eV) acted as the pump, while a time-delayed ultrafast pulse probed the near-infrared (NIR) reflectivity of the Al film. Remarkably, following the intense FEL excitation, the reflectivity of the film exhibited no detectable variation for hundreds of femtoseconds. Following this latency time, sizable reflectivity changes were observed. Exploiting recent theoretical calculations of the EUV-excited electron dynamics [N. Medvedev, Phys. Rev. Lett. 107, 165003 (2011)PRLTAO0031-900710.1103/PhysRevLett.107.165003], the delayed NIR-reflectivity evolution is interpreted invoking the formation of very-long-living nonthermal hot electron distributions in Al after exposure to intense EUV pulses. Our data represent the first evidence in the time domain of such an intriguing behavior.
File in questo prodotto:
File Dimensione Formato  
Bisio_PhysRevB.96.081119_2017.pdf

solo utenti autorizzati

Tipologia: Documento in versione editoriale
Dimensione 257.27 kB
Formato Adobe PDF
257.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/881413
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact