European energy policies drive to energy efficiency and renewable energies. This global view, converted into national regulations, finds difficulties with energy market, technology costs, and mutable economic conditions making difficult the evaluation of the profitability of these projects. Based upon the above considerations, a Decision Support System for the evaluation of the sustainability of Biomass Combined Heat and Power (BCHP) Plants is here presented. The model provides a technical-economic quantification of a CHP Plant supplied by biomass, with Rankine thermal cycle and District Heating (DH) network serving an industrial district. The aim of the model is to find the optimal Plant configuration in terms of steam turbine choice and the consequent thermal cycle parameters by varying decisional variables describing the type of industrial district, its yearly thermal loads (heating and cooling), the requested carrier fluid, the pipeline distances from the Power Plant. Other parameters, as the feed-in-premium tariff for the electrical energy and natural gas integration, have been considered. Starting by variable and fixed costs and revenues, the Internal Rate of Return of the project has been calculated. An optimal Plant configuration has been defined, and a sensitivity analysis have been performed. The model has been applied to a case related to the city of Quattordio in northern Italy. DOI: 10.18280/ijht.35Sp0144
Energy modelling and decision support algorithm for the exploitation of biomass resources in industrial districts
ZACCONE, RICCARDO;SACILE, ROBERTO;FOSSA, MARCO
2017-01-01
Abstract
European energy policies drive to energy efficiency and renewable energies. This global view, converted into national regulations, finds difficulties with energy market, technology costs, and mutable economic conditions making difficult the evaluation of the profitability of these projects. Based upon the above considerations, a Decision Support System for the evaluation of the sustainability of Biomass Combined Heat and Power (BCHP) Plants is here presented. The model provides a technical-economic quantification of a CHP Plant supplied by biomass, with Rankine thermal cycle and District Heating (DH) network serving an industrial district. The aim of the model is to find the optimal Plant configuration in terms of steam turbine choice and the consequent thermal cycle parameters by varying decisional variables describing the type of industrial district, its yearly thermal loads (heating and cooling), the requested carrier fluid, the pipeline distances from the Power Plant. Other parameters, as the feed-in-premium tariff for the electrical energy and natural gas integration, have been considered. Starting by variable and fixed costs and revenues, the Internal Rate of Return of the project has been calculated. An optimal Plant configuration has been defined, and a sensitivity analysis have been performed. The model has been applied to a case related to the city of Quattordio in northern Italy. DOI: 10.18280/ijht.35Sp0144I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.