Thanks to exciting chemical and optical features, perylene bisimide (PBI) J-aggregates are ideal candidates to be employed for high-performance plastic photonic devices. However, they generally tend to form - stacked H-aggregates that are unsuitable for implementation in polymer resonant cavities. In this work, we demonstrate the efficient compatibilization of a tailored perylene bisimide forming robust J-aggregated supramolecular polymers into amorphous polypropylene. The new nanocomposite was then implemented into an all-polymer planar microcavity which provides strong and directional spectral redistribution of the J-aggregate photoluminescence, owing to a strong modification of the photonic states. A systematic analysis of the photoemitting processes, including photoluminescence decay and quantum yields, shows that the optical confinement in the polymeric microcavity does not introduce any additional nonradiative de-excitation pathways to those already found in the J-aggregate nanocomposite film and pave the way to PBI-based high-performance plastic photonic devices.
All-Polymer Photonic Microcavities Doped with Perylene Bisimide J-Aggregates
Paola Lova;Giovanni Manfredi;Davide Comoretto
2017-01-01
Abstract
Thanks to exciting chemical and optical features, perylene bisimide (PBI) J-aggregates are ideal candidates to be employed for high-performance plastic photonic devices. However, they generally tend to form - stacked H-aggregates that are unsuitable for implementation in polymer resonant cavities. In this work, we demonstrate the efficient compatibilization of a tailored perylene bisimide forming robust J-aggregated supramolecular polymers into amorphous polypropylene. The new nanocomposite was then implemented into an all-polymer planar microcavity which provides strong and directional spectral redistribution of the J-aggregate photoluminescence, owing to a strong modification of the photonic states. A systematic analysis of the photoemitting processes, including photoluminescence decay and quantum yields, shows that the optical confinement in the polymeric microcavity does not introduce any additional nonradiative de-excitation pathways to those already found in the J-aggregate nanocomposite film and pave the way to PBI-based high-performance plastic photonic devices.File | Dimensione | Formato | |
---|---|---|---|
11567-875288.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in versione editoriale
Dimensione
1.85 MB
Formato
Adobe PDF
|
1.85 MB | Adobe PDF | Visualizza/Apri |
11567-875288sup1.pdf
accesso aperto
Descrizione: Supplemento 1
Tipologia:
Documento in versione editoriale
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.