Our aim consists in developing a software which can recognize M trading patterns in real time using Hidden Markov Models (HMMs). A trading pattern is a predefined figure indicating a specific behavior of prices. We trained M + 1 HMMs using Baum-Welch Algorithm combined with Genetic Algorithm. In particular, with HMMs we describe M trading patterns while the other one, called threshold model, can recognize all the not predefined patterns. The classification algorithm correctly recognizes 93% of the provided patterns. Thanks to the analysis of the false positive examples, we finally designed some more filters to reduce them.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Pattern recognition using hidden Markov models in financial time series |
Autori: | |
Data di pubblicazione: | 2017 |
Rivista: | |
Handle: | http://hdl.handle.net/11567/875080 |
Appare nelle tipologie: | 01.01 - Articolo su rivista |