Given k∈N, we study the vanishing of the Dirichlet series. Dk(s,f):=∑n≥1dk(n)f(n)n-s at the point s=1, where f is a periodic function modulo a prime p. We show that if (k,p-1)=1 or if (k,p-1)=2 and p≡3 (mod 4), then there are no odd rational-valued functions f≢0 such that Dk(1,f)=0, whereas in all other cases there are examples of odd functions f such that Dk(1,f)=0.As a consequence, we obtain, for example, that the set of values L(1,χ)2, where χ ranges over odd characters mod p, are linearly independent over Q.
On the non-vanishing of certain Dirichlet series
BETTIN, SANDRO;
2017-01-01
Abstract
Given k∈N, we study the vanishing of the Dirichlet series. Dk(s,f):=∑n≥1dk(n)f(n)n-s at the point s=1, where f is a periodic function modulo a prime p. We show that if (k,p-1)=1 or if (k,p-1)=2 and p≡3 (mod 4), then there are no odd rational-valued functions f≢0 such that Dk(1,f)=0, whereas in all other cases there are examples of odd functions f such that Dk(1,f)=0.As a consequence, we obtain, for example, that the set of values L(1,χ)2, where χ ranges over odd characters mod p, are linearly independent over Q.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022314X17301920-main.pdf
accesso chiuso
Descrizione: articolo principale
Tipologia:
Documento in versione editoriale
Dimensione
422.8 kB
Formato
Adobe PDF
|
422.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.