In this review, we summarize recent results in the study of the thermo-electric transport properties of holographic models exhibiting mechanism of momentum dissipation. These models are of particular interests if applied to understand the transport mechanisms of strongly coupled condensed matter systems such as the high-temperature superconductors. After a brief introduction in which we point out the discrepancies between the experimentally measured transport properties of these materials and the prediction of the weakly coupled theory of Fermi Liquid, we will review the basic aspects of AdS/CFT correspondence and how gravitational models could help in understanding the peculiar properties of strongly coupled condensed matter systems.
Thermo-electric transport in gauge/gravity models
AMORETTI, ANDREA;MAGGIORE, NICOLA;MAGNOLI, NICODEMO
2017-01-01
Abstract
In this review, we summarize recent results in the study of the thermo-electric transport properties of holographic models exhibiting mechanism of momentum dissipation. These models are of particular interests if applied to understand the transport mechanisms of strongly coupled condensed matter systems such as the high-temperature superconductors. After a brief introduction in which we point out the discrepancies between the experimentally measured transport properties of these materials and the prediction of the weakly coupled theory of Fermi Liquid, we will review the basic aspects of AdS/CFT correspondence and how gravitational models could help in understanding the peculiar properties of strongly coupled condensed matter systems.File | Dimensione | Formato | |
---|---|---|---|
42.pdf
accesso aperto
Tipologia:
Documento in versione editoriale
Dimensione
1.67 MB
Formato
Adobe PDF
|
1.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.