The transport dynamics of a quenched Luttinger liquid tunnel-coupled to a fermionic reservoir is investigated. In the transient dynamics, we show that for a sudden quench of the electron interaction universal power-law decay in time of the tunneling current occurs, ascribed to the presence of entangled compound excitations created by the quench. In sharp contrast to the usual nonuniversal power-law behavior of a zero-temperature nonquenched Luttinger liquid, the steady-state tunneling current is Ohmic and can be explained in terms of an effective quench-activated heating of the system. Our study unveils an unconventional dynamics for a quenched Luttinger liquid that could be identified in quenched cold Fermi gases.

Universal transport dynamics in a quenched tunnel-coupled Luttinger liquid

GAMBETTA, FILIPPO MARIA;CAVALIERE, FABIO;SASSETTI, MAURA
2016-01-01

Abstract

The transport dynamics of a quenched Luttinger liquid tunnel-coupled to a fermionic reservoir is investigated. In the transient dynamics, we show that for a sudden quench of the electron interaction universal power-law decay in time of the tunneling current occurs, ascribed to the presence of entangled compound excitations created by the quench. In sharp contrast to the usual nonuniversal power-law behavior of a zero-temperature nonquenched Luttinger liquid, the steady-state tunneling current is Ohmic and can be explained in terms of an effective quench-activated heating of the system. Our study unveils an unconventional dynamics for a quenched Luttinger liquid that could be identified in quenched cold Fermi gases.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/865922
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact