A new condition, called “Local KMS Condition”, characterizing states of a quantum field to which one can ascribe, at a given spacetime point, a temperature, is introduced in this article. It will be shown that the Local KMS Condition (LKMS condition) is equivalent to the Local Thermal Equilibrium (LTE) condition, proposed previously by Buchholz, Ojima and Roos, for states of the quantized scalar Klein–Gordon field that fulfill the analytic microlocal spectrum condition. Therefore, known examples of states fulfilling the LTE condition provide examples of states obeying the LKMS condition with a temperature distribution varying in space and time. The results extend to the generalized cases of mixed-temperature LKMS and LTE states. The LKMS condition therefore provides a promising generalization of the KMS condition, which characterizes global thermal equilibrium states with respect to an inertial time evolution, to states which are globally out of equilibrium but still possess a local temperature distribution.

KMS-like properties of local equilibrium states in quantum field theory

PINAMONTI, NICOLA;
2017-01-01

Abstract

A new condition, called “Local KMS Condition”, characterizing states of a quantum field to which one can ascribe, at a given spacetime point, a temperature, is introduced in this article. It will be shown that the Local KMS Condition (LKMS condition) is equivalent to the Local Thermal Equilibrium (LTE) condition, proposed previously by Buchholz, Ojima and Roos, for states of the quantized scalar Klein–Gordon field that fulfill the analytic microlocal spectrum condition. Therefore, known examples of states fulfilling the LTE condition provide examples of states obeying the LKMS condition with a temperature distribution varying in space and time. The results extend to the generalized cases of mixed-temperature LKMS and LTE states. The LKMS condition therefore provides a promising generalization of the KMS condition, which characterizes global thermal equilibrium states with respect to an inertial time evolution, to states which are globally out of equilibrium but still possess a local temperature distribution.
File in questo prodotto:
File Dimensione Formato  
1508.05585.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 550.18 kB
Formato Adobe PDF
550.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/862416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact