Many years after its initial description, paratonia remains a poorly understood concept. It is described as the inability to relax muscles during muscle tone assessment with the subject involuntary facilitating or opposing the examiner. Although related to cognitive impairment and frontal lobe function, the underlying mechanisms have not been clarified. Moreover, criteria to distinguish oppositional paratonia from parkinsonian rigidity or spasticity are not yet available. Paratonia is very frequently encountered in clinical practice and only semi-quantitative rating scales are available. The purpose of this study is to assess the feasibility of a quantitative measure of paratonia using surface electromyography. Paratonia was elicited by performing consecutive metronome-synchronized continuous and discontinuous elbow movements in a group of paratonic patients with cognitive impairment. Goniometric and electromyographic recordings were performed on biceps and triceps brachii muscles. Facilitatory (mitgehen) and oppositional (gegenhalten) paratonia could be recorded on both muscles. After normalization with voluntary maximal contraction, biceps showed higher paratonia than triceps. Facilitatory paratonia was higher than oppositional on the biceps. Movement repetition induced increased paratonic burst amplitude only when flexion and extension movements were performed continuously. Both facilitatory and oppositional paratonia increased with movement repetition. Only oppositional paratonia increased following faster movements. This is the first study providing a quantitative and objective characterization of paratonia using electromyography. Unlike parkinsonian rigidity, oppositional paratonia increases with velocity and with consecutive movement repetition. Like spasticity, oppositional paratonia is velocity-dependent, but different from spasticity, it increases during movement repetition instead of decreasing. A quantitative measure of paratonia could help better understanding its pathophysiology and could be used for research purposes on cognitive impairment.

Electromyographic assessment of paratonia

MARINELLI, LUCIO;MORI, LAURA;PARDINI, MATTEO;COCITO, LEONARDO;ABBRUZZESE, GIOVANNI;TROMPETTO, CARLO
2017-01-01

Abstract

Many years after its initial description, paratonia remains a poorly understood concept. It is described as the inability to relax muscles during muscle tone assessment with the subject involuntary facilitating or opposing the examiner. Although related to cognitive impairment and frontal lobe function, the underlying mechanisms have not been clarified. Moreover, criteria to distinguish oppositional paratonia from parkinsonian rigidity or spasticity are not yet available. Paratonia is very frequently encountered in clinical practice and only semi-quantitative rating scales are available. The purpose of this study is to assess the feasibility of a quantitative measure of paratonia using surface electromyography. Paratonia was elicited by performing consecutive metronome-synchronized continuous and discontinuous elbow movements in a group of paratonic patients with cognitive impairment. Goniometric and electromyographic recordings were performed on biceps and triceps brachii muscles. Facilitatory (mitgehen) and oppositional (gegenhalten) paratonia could be recorded on both muscles. After normalization with voluntary maximal contraction, biceps showed higher paratonia than triceps. Facilitatory paratonia was higher than oppositional on the biceps. Movement repetition induced increased paratonic burst amplitude only when flexion and extension movements were performed continuously. Both facilitatory and oppositional paratonia increased with movement repetition. Only oppositional paratonia increased following faster movements. This is the first study providing a quantitative and objective characterization of paratonia using electromyography. Unlike parkinsonian rigidity, oppositional paratonia increases with velocity and with consecutive movement repetition. Like spasticity, oppositional paratonia is velocity-dependent, but different from spasticity, it increases during movement repetition instead of decreasing. A quantitative measure of paratonia could help better understanding its pathophysiology and could be used for research purposes on cognitive impairment.
File in questo prodotto:
File Dimensione Formato  
52 Marinelli Electromyographic assessment of paratonia.pdf

accesso chiuso

Descrizione: full text
Tipologia: Documento in Post-print
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
27999892.pdf

accesso aperto

Descrizione: green open access full text
Tipologia: Documento in Post-print
Dimensione 346.5 kB
Formato Adobe PDF
346.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/859075
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact