The percolation behavior of alumina suspensions is studied by computer simulations. The percolation threshold ϕc is calculated, determining the key factors that affect its magnitude: the strength of colloid-colloid attraction and the presence of hydrodynamic interactions (HIs). To isolate the effects of HIs, we compare the results of Brownian Dynamics, which do not include hydrodynamics, with those of Stochastic Rotation Dynamics-Molecular Dynamics, which include hydrodynamics. Our results show that ϕc decreases with the increase of the attraction between the colloids. The inclusion of HIs always leads to more elongated structures during the aggregation process, producing a sizable decrease of ϕc when the colloid-colloid attraction is not too strong. On the other hand, the effects of HIs on ϕc tend to become negligible with increasing attraction strength. Our ϕc values are in good agreement with those estimated by the yield stress model by Flatt and Bowen.

How colloid-colloid interactions and hydrodynamic effects influence the percolation threshold: A simulation study in alumina suspensions

CERBELAUD, MANUELLA;FERRANDO, RICCARDO
2015-01-01

Abstract

The percolation behavior of alumina suspensions is studied by computer simulations. The percolation threshold ϕc is calculated, determining the key factors that affect its magnitude: the strength of colloid-colloid attraction and the presence of hydrodynamic interactions (HIs). To isolate the effects of HIs, we compare the results of Brownian Dynamics, which do not include hydrodynamics, with those of Stochastic Rotation Dynamics-Molecular Dynamics, which include hydrodynamics. Our results show that ϕc decreases with the increase of the attraction between the colloids. The inclusion of HIs always leads to more elongated structures during the aggregation process, producing a sizable decrease of ϕc when the colloid-colloid attraction is not too strong. On the other hand, the effects of HIs on ϕc tend to become negligible with increasing attraction strength. Our ϕc values are in good agreement with those estimated by the yield stress model by Flatt and Bowen.
File in questo prodotto:
File Dimensione Formato  
jcis458_241.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 846.38 kB
Formato Adobe PDF
846.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/858746
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact