We propose an extension with name variables of a calculus for incremental rebinding of code introduced in previous work. Names, which can be either constants or variables, are used as interface of fragments of code with free variables. Open code can be dynamically rebound by applying a rebinding, which is an association from names to terms. Rebinding is incremental, since rebindings can contain free variables as well, and can be manipulated by operators such as overriding and renaming. By using name variables, it is possible to write terms which are parametric in their nominal interface and/or in the way it is adapted, greatly enhancing expressivity. The type system is correspondingly extended by constrained name-polymorphic types, where simple inequality constraints prevent conflicts among parametric name interfaces.
Incremental Rebinding with Name Polymorphism
ANCONA, DAVIDE;ZUCCA, ELENA
2016-01-01
Abstract
We propose an extension with name variables of a calculus for incremental rebinding of code introduced in previous work. Names, which can be either constants or variables, are used as interface of fragments of code with free variables. Open code can be dynamically rebound by applying a rebinding, which is an association from names to terms. Rebinding is incremental, since rebindings can contain free variables as well, and can be manipulated by operators such as overriding and renaming. By using name variables, it is possible to write terms which are parametric in their nominal interface and/or in the way it is adapted, greatly enhancing expressivity. The type system is correspondingly extended by constrained name-polymorphic types, where simple inequality constraints prevent conflicts among parametric name interfaces.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.