Many variants of uncertain functional significance in cancer susceptibility genes lie in regulatory regions, and clarifying their association with disease risk poses significant challenges. We studied 17 germline variants (nine of which were novel) in the CDKN2A 5'UTR with independent approaches, which included mono and bicistronic reporter assays, Western blot of endogenous protein, and allelic representation after polysomal profiling to investigate their impact on CDKN2A mRNA translation regulation. Two of the novel variants (c.-27del23, c.-93-91delAGG) were classified as causal mutations (score ≥3), along with the c.-21C>T, c.-34G>T, and c.-56G>T, which had already been studied by a subset of assays. The novel c.-42T>A as well as the previously described c.-67G>C were classified as potential mutations (score 1 or 2). The remaining variants (c.-14C>T, c.-20A>G, c.-25C>T+c.-180G>A, c.-30G>A, c.-40C>T, c.-45G>A, c.-59C>G, c.-87T>A, c.-252A>T) were classified as neutral (score 0). In conclusion, we found evidence that nearly half of the variants found in this region had a negative impact on CDKN2A mRNA translation, supporting the hypothesis that 5'UTR can act as a cellular Internal Ribosome Entry Site (IRES) to modulate p16INK4a translation.

The CDKN2A/p16INK4a 5'UTR sequence and translational regulation: Impact of novel variants predisposing to melanoma

ANDREOTTI, VIRGINIA;PASTORINO, LORENZA;BRUNO, WILLIAM;Inga, Alberto;GHIORZO, PAOLA
2016

Abstract

Many variants of uncertain functional significance in cancer susceptibility genes lie in regulatory regions, and clarifying their association with disease risk poses significant challenges. We studied 17 germline variants (nine of which were novel) in the CDKN2A 5'UTR with independent approaches, which included mono and bicistronic reporter assays, Western blot of endogenous protein, and allelic representation after polysomal profiling to investigate their impact on CDKN2A mRNA translation regulation. Two of the novel variants (c.-27del23, c.-93-91delAGG) were classified as causal mutations (score ≥3), along with the c.-21C>T, c.-34G>T, and c.-56G>T, which had already been studied by a subset of assays. The novel c.-42T>A as well as the previously described c.-67G>C were classified as potential mutations (score 1 or 2). The remaining variants (c.-14C>T, c.-20A>G, c.-25C>T+c.-180G>A, c.-30G>A, c.-40C>T, c.-45G>A, c.-59C>G, c.-87T>A, c.-252A>T) were classified as neutral (score 0). In conclusion, we found evidence that nearly half of the variants found in this region had a negative impact on CDKN2A mRNA translation, supporting the hypothesis that 5'UTR can act as a cellular Internal Ribosome Entry Site (IRES) to modulate p16INK4a translation.
File in questo prodotto:
File Dimensione Formato  
Andreotti_et_al-2016-Pigment_Cell_&_Melanoma_Research (1).pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 762.07 kB
Formato Adobe PDF
762.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/854325
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact