This paper gives an overview of some stochastic optimization strategies, namely, evolution strategies, genetic algorithms, and simulated annealing, and how these methods can be applied to problems in electrical engineering. Since these methods usually require a careful tuning of the parameters which control the behavior of the strategies (strategy parameters), significant features of the algorithms implemented by the authors are presented. An analytical comparison among them is performed. Finally, results are discussed on three optimization problems.

Stochastic algorithms in electromagnetic optimization

NERVI, MARIO;
1998-01-01

Abstract

This paper gives an overview of some stochastic optimization strategies, namely, evolution strategies, genetic algorithms, and simulated annealing, and how these methods can be applied to problems in electrical engineering. Since these methods usually require a careful tuning of the parameters which control the behavior of the strategies (strategy parameters), significant features of the algorithms implemented by the authors are presented. An analytical comparison among them is performed. Finally, results are discussed on three optimization problems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/853968
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 109
  • ???jsp.display-item.citation.isi??? 90
social impact