The aim of this paper is the definition of an equivalent two-port model of a transmission line that is able to take into account high frequency radiation effects. Such a model is particularly useful when one has to represent the line into a more complex power system, modeled in a lumped way. To reach this goal, it is necessary to produce a reliable and computationally effective solution to the problem of the high-frequency electromagnetic field coupling with a terminated transmission line. From a mathematical standpoint, this problem can be presented by means of an integral equation whose solution can be achieved with regularization procedures for linear inverse problems. In order to obtain a computationally efficient result, the unknown current is first developed in a Fourier series and then the Landweber iterative algorithm is applied to identify the series coefficients. The proposed method is then tested taking as reference the numerical results obtained using the Numerical Electromagnetics Code (NEC-2), reaching a good agreement.
An equivalent two-port model for a transmission line of finite length accounting for high-frequency effects
Brignone, Massimo;Delfino, Federico;Procopio, Renato;Rossi, Mansueto
2014-01-01
Abstract
The aim of this paper is the definition of an equivalent two-port model of a transmission line that is able to take into account high frequency radiation effects. Such a model is particularly useful when one has to represent the line into a more complex power system, modeled in a lumped way. To reach this goal, it is necessary to produce a reliable and computationally effective solution to the problem of the high-frequency electromagnetic field coupling with a terminated transmission line. From a mathematical standpoint, this problem can be presented by means of an integral equation whose solution can be achieved with regularization procedures for linear inverse problems. In order to obtain a computationally efficient result, the unknown current is first developed in a Fourier series and then the Landweber iterative algorithm is applied to identify the series coefficients. The proposed method is then tested taking as reference the numerical results obtained using the Numerical Electromagnetics Code (NEC-2), reaching a good agreement.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.