Metallic silver, copper, and Ag-Cu nanoparticles (NPs) have been produced by a chemical reduction method. The obtained nanoparticles were characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). A side-segregated configuration was observed for the one-pot synthesized Ag-Cu NPs, and the melting temperature depression of about 14 degrees C was found by differential scanning calorimetry (DSC). A comparison between the new experimental data, the literature data on Ag-Cu bimetallic NPs and the corresponding theoretical values obtained from the Ag-Cu nano-sized phase diagram was done, whereas the melting behaviour of Ag and Cu metal nanoparticles was discussed in the framework of the liquid layer model (LLM).
Synthesis and thermodynamics of Ag-Cu nanoparticles
DELSANTE, SIMONA;BORZONE, GABRIELLA;
2015-01-01
Abstract
Metallic silver, copper, and Ag-Cu nanoparticles (NPs) have been produced by a chemical reduction method. The obtained nanoparticles were characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). A side-segregated configuration was observed for the one-pot synthesized Ag-Cu NPs, and the melting temperature depression of about 14 degrees C was found by differential scanning calorimetry (DSC). A comparison between the new experimental data, the literature data on Ag-Cu bimetallic NPs and the corresponding theoretical values obtained from the Ag-Cu nano-sized phase diagram was done, whereas the melting behaviour of Ag and Cu metal nanoparticles was discussed in the framework of the liquid layer model (LLM).File | Dimensione | Formato | |
---|---|---|---|
Synthesis_Thermodynamics_Ag-Cu_NPs.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
2.25 MB
Formato
Adobe PDF
|
2.25 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.