Nowadays most industries do not integrate product, process and energy data. Costs due to energy consumption are often considered externalities and energy efficiency is not deemed a relevant performance criterion. In energy-intensive processes, as injection moulding, the specific energy consumption, embedded inside the same products, depends on the machine–product combinations. Multi-objective scheduling, including the energy data acquired from shop floor and allocation criteria, is a valuable approach to improve energy efficiency. This paper presents the extension of a commercial detailed scheduling support system developed within a regional Italian project aiming at providing tools to manufacturing industry for improving energy efficiency. The project designed a monitoring system developed by instrumenting injection moulding presses to acquire the energy consumption for each product–machine combination. The commercial scheduling system was extended by implementing a multi-objective metaheuristic scheduling approach. The experimental assessment of the proposed approach involved a major producer of plastic dispensers. The extended algorithm simultaneously optimizes the total weighted tardiness, the total setup and the energy consumption costs. The obtained results, produced for a real test case and a set of random generated instances, show the effectiveness of the proposed approach.

Facing energy-aware scheduling: a multi-objective extension of a scheduling support system for improving energy efficiency in a moulding industry

PAOLUCCI, MASSIMO;ANGHINOLFI, DAVIDE;TONELLI, FLAVIO
2017-01-01

Abstract

Nowadays most industries do not integrate product, process and energy data. Costs due to energy consumption are often considered externalities and energy efficiency is not deemed a relevant performance criterion. In energy-intensive processes, as injection moulding, the specific energy consumption, embedded inside the same products, depends on the machine–product combinations. Multi-objective scheduling, including the energy data acquired from shop floor and allocation criteria, is a valuable approach to improve energy efficiency. This paper presents the extension of a commercial detailed scheduling support system developed within a regional Italian project aiming at providing tools to manufacturing industry for improving energy efficiency. The project designed a monitoring system developed by instrumenting injection moulding presses to acquire the energy consumption for each product–machine combination. The commercial scheduling system was extended by implementing a multi-objective metaheuristic scheduling approach. The experimental assessment of the proposed approach involved a major producer of plastic dispensers. The extended algorithm simultaneously optimizes the total weighted tardiness, the total setup and the energy consumption costs. The obtained results, produced for a real test case and a set of random generated instances, show the effectiveness of the proposed approach.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/844997
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact