The crystal chemical features of the new series of compounds R6Mg23C with R = La-Sm or Gd and Ce6Mg23Z with Z = C, Si, Ge, Sn, Pb, P, As, or Sb have been studied by means of single-crystal and powder X-ray diffraction techniques. All phases crystallize with the cubic Zr6Zn23Si prototype (cF120, space group Fm3m, Z = 4), a filled variant of the Th6Mn23 structure. While no Th6Mn23-type binary rare earth-magnesium compound is known to exist, the addition of a third element Z (only 3 atom %), located into the octahedral cavity of the Th6Mn23 cell (Wyckoff site 4a), stabilizes this structural arrangement and makes possible the formation of the ternary R6Mg23Z compounds. The results of both structural and topological analyses as well as of LMTO electronic structure calculations show that the interstitial element plays a crucial role in the stability of these phases, forming a strongly bonded [R6Z] octahedral moiety spaced by zeolite cage-like [Mg45] clusters. Considering these two building units, the crystal structure of these apparently complex intermetallics can be simplified to the NaCl-type topology. Moreover, a structural relationship between RMg3 and R6Mg23C compounds has been unveiled; the latter can be described as substitutional derivatives of the former. The geometrical distortions and the consequent symmetry reduction that accompany this transformation are explicitly described by means of the Bärnighausen formalism within group theory.

Crystal Chemistry of the New Families of Interstitial Compounds R6Mg23C (R = La, Ce, Pr, Nd, Sm, or Gd) and Ce6Mg23Z (Z = C, Si, Ge, Sn, Pb, P, As, or Sb)

MANFRINETTI, PIETRO;PANI, MARCELLA;SOLOKHA, PAVLO;SACCONE, ADRIANA
2016-01-01

Abstract

The crystal chemical features of the new series of compounds R6Mg23C with R = La-Sm or Gd and Ce6Mg23Z with Z = C, Si, Ge, Sn, Pb, P, As, or Sb have been studied by means of single-crystal and powder X-ray diffraction techniques. All phases crystallize with the cubic Zr6Zn23Si prototype (cF120, space group Fm3m, Z = 4), a filled variant of the Th6Mn23 structure. While no Th6Mn23-type binary rare earth-magnesium compound is known to exist, the addition of a third element Z (only 3 atom %), located into the octahedral cavity of the Th6Mn23 cell (Wyckoff site 4a), stabilizes this structural arrangement and makes possible the formation of the ternary R6Mg23Z compounds. The results of both structural and topological analyses as well as of LMTO electronic structure calculations show that the interstitial element plays a crucial role in the stability of these phases, forming a strongly bonded [R6Z] octahedral moiety spaced by zeolite cage-like [Mg45] clusters. Considering these two building units, the crystal structure of these apparently complex intermetallics can be simplified to the NaCl-type topology. Moreover, a structural relationship between RMg3 and R6Mg23C compounds has been unveiled; the latter can be described as substitutional derivatives of the former. The geometrical distortions and the consequent symmetry reduction that accompany this transformation are explicitly described by means of the Bärnighausen formalism within group theory.
File in questo prodotto:
File Dimensione Formato  
Crystal Chemistry of the New Families of Interstitial Compounds R6Mg23C Inorg Chem (2016).pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 4.87 MB
Formato Adobe PDF
4.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/843264
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact