In this paper an approach for the determination of the optimal size and management of a plant for hydrogen production from renewable source (photovoltaic panels) is presented. Hydrogen is produced by a pressurized alkaline electrolyser (42 kW) installed at the University Campus of Savona (Italy) in 2014 and fed by electrical energy produced by photovoltaic panels. Experimental tests have been carried out in order to analyze the performance curve of the electrolyser in different operative conditions, investigating the influence of the different parameters on the efficiency. The results have been implemented in a software tool in order to describe the behavior of the systems in off-design conditions. Since the electrical energy produced by photovoltaic panels and used to feed the electrolyser is strongly variable because of the random nature of the solar irradiance, a time-dependent hierarchical thermoeconomic analysis is carried out to evaluate both the optimal size and the management approach related to the system, considering a fixed size of 1 MW for the photovoltaic panels. The thermo-economic analysis is performed with the software tool W-ECoMP, developed by the authors’ research group: the Italian energy scenario is considered, investigating the impact of electricity cost on the results as well.
Hydrogen production system from photovoltaic panels: experimental characterization and size optimization
FERRARI, MARIO LUIGI;RIVAROLO, MASSIMO;MASSARDO, ARISTIDE
2016-01-01
Abstract
In this paper an approach for the determination of the optimal size and management of a plant for hydrogen production from renewable source (photovoltaic panels) is presented. Hydrogen is produced by a pressurized alkaline electrolyser (42 kW) installed at the University Campus of Savona (Italy) in 2014 and fed by electrical energy produced by photovoltaic panels. Experimental tests have been carried out in order to analyze the performance curve of the electrolyser in different operative conditions, investigating the influence of the different parameters on the efficiency. The results have been implemented in a software tool in order to describe the behavior of the systems in off-design conditions. Since the electrical energy produced by photovoltaic panels and used to feed the electrolyser is strongly variable because of the random nature of the solar irradiance, a time-dependent hierarchical thermoeconomic analysis is carried out to evaluate both the optimal size and the management approach related to the system, considering a fixed size of 1 MW for the photovoltaic panels. The thermo-economic analysis is performed with the software tool W-ECoMP, developed by the authors’ research group: the Italian energy scenario is considered, investigating the impact of electricity cost on the results as well.File | Dimensione | Formato | |
---|---|---|---|
Pubblicato.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
1.8 MB
Formato
Adobe PDF
|
1.8 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Post print.pdf
accesso aperto
Tipologia:
Documento in Post-print
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.