We investigate the analytic properties of nonlinear twists of $L$-functions. Given an $L$-function $F(s)$ of degree $d$ and a twist $F(s;f)$ with leading exponent $>1/d$, we first prove a general transformation formula relating $F(s;f)$ to its dual twist $overline{F}(s;f^*)$. Then we combine such a formula with the results obtained in part I of the paper, to deduce the analytic properties of new classes of nonlinear twists. This allows to detect several new cases of resonance for the classical $L$-functions.

Twists and resonance of L-functions, II

PERELLI, ALBERTO
2016-01-01

Abstract

We investigate the analytic properties of nonlinear twists of $L$-functions. Given an $L$-function $F(s)$ of degree $d$ and a twist $F(s;f)$ with leading exponent $>1/d$, we first prove a general transformation formula relating $F(s;f)$ to its dual twist $overline{F}(s;f^*)$. Then we combine such a formula with the results obtained in part I of the paper, to deduce the analytic properties of new classes of nonlinear twists. This allows to detect several new cases of resonance for the classical $L$-functions.
File in questo prodotto:
File Dimensione Formato  
114-2016:K-P:reso_II.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 234.97 kB
Formato Adobe PDF
234.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/828783
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact