Abstract A new way of handling, simultaneously, porosity and bending resistance of a massive filament is proposed. Our strategy extends the previous methods where porosity was taken into account in the absence of bending resistance of the structure and overcomes related numerical issues. The new strategy has been exploited to investigate how porosity affects the stability of slender elastic objects exposed to a uniform stream. To understand under which conditions porosity becomes important, we propose a simple resonance mechanism between a properly defined characteristic porous time-scale and the standard characteristic hydrodynamic time-scale. The resonance condition results in a critical value for the porosity above which porosity is important for the resulting filament flapping regime, otherwise its role can be considered of little importance. Our estimation for the critical value of the porosity is in fairly good agreement with our DNS results. The computations also allow us to quantitatively establish the stabilizing role of porosity in the flapping regimes.

Stabilizing effect of porosity on a flapping filament

NATALI, DAMIANO;PRALITS, JAN OSCAR;MAZZINO, ANDREA;
2016-01-01

Abstract

Abstract A new way of handling, simultaneously, porosity and bending resistance of a massive filament is proposed. Our strategy extends the previous methods where porosity was taken into account in the absence of bending resistance of the structure and overcomes related numerical issues. The new strategy has been exploited to investigate how porosity affects the stability of slender elastic objects exposed to a uniform stream. To understand under which conditions porosity becomes important, we propose a simple resonance mechanism between a properly defined characteristic porous time-scale and the standard characteristic hydrodynamic time-scale. The resonance condition results in a critical value for the porosity above which porosity is important for the resulting filament flapping regime, otherwise its role can be considered of little importance. Our estimation for the critical value of the porosity is in fairly good agreement with our DNS results. The computations also allow us to quantitatively establish the stabilizing role of porosity in the flapping regimes.
File in questo prodotto:
File Dimensione Formato  
JFS_Natali_etal_2016.pdf

accesso chiuso

Descrizione: articolo principale
Tipologia: Documento in Post-print
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/824259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact