We derive in this paper a new Local Rademacher Complexity risk bound on the generalization ability of a model, which is able to take advantage of the availability of unlabeled samples. Moreover, this new bound improves state-of-the-art results even when no unlabeled samples are available.

Local Rademacher Complexity: Sharper risk bounds with and without unlabeled samples

ONETO, LUCA;GHIO, ALESSANDRO;RIDELLA, SANDRO;ANGUITA, DAVIDE
2015-01-01

Abstract

We derive in this paper a new Local Rademacher Complexity risk bound on the generalization ability of a model, which is able to take advantage of the availability of unlabeled samples. Moreover, this new bound improves state-of-the-art results even when no unlabeled samples are available.
File in questo prodotto:
File Dimensione Formato  
J010 - NN.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 641 kB
Formato Adobe PDF
641 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/820671
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 26
social impact