Magnetic and thermal properties of Ferromagnetic (FM) Ce_2.15(Pd_1-xAg_x)_1.95In_0.9 alloys were studied in order to determine the Quantum Critical Point (QCP) at T_C => 0. The increase of band electrons produced by Pd/Ag substitution depresses T_C(x) from 4.1K down to T_C(x=0.5)=1.1K, with a QCP extrapolated to x_QCP~ 0.6. Magnetic susceptibility from T>30K indicates an effective moment slightly decreasing from \mu_eff=2.56\mu_B to 2.4\mu_B at x=0.5. These values and the paramagnetic temperature \theta_P~ -10K exclude significant Kondo screening effects. The T_C(x) reduction is accompanied by a weakening of the FM magnetization and the emergence of a specific heat C_m(T) anomaly at T*~ 1K, without signs of magnetism detected from AC-susceptibility. The magnetic entropy collected around 4K (i.e. the T_C of the x=0 sample) practically does not change with Ag concentration: S_m(4K)~ 0.8 Rln2, suggesting a progressive transfer of FM degrees of freedom to the non-magnetic (NM) component. No antecedent was found concerning any NM anomaly emerging from a FM system at such temperature. The origin of this anomaly is attributed to an 'entropy bottleneck' originated in the nearly divergent power law dependence for T>T*.
Emerging frustration effects in ferromagnetic Ce_2[Pd_1-xAg_x]_2In alloys
GIOVANNINI, MAURO;GASTALDO, FEDERICA
2015-01-01
Abstract
Magnetic and thermal properties of Ferromagnetic (FM) Ce_2.15(Pd_1-xAg_x)_1.95In_0.9 alloys were studied in order to determine the Quantum Critical Point (QCP) at T_C => 0. The increase of band electrons produced by Pd/Ag substitution depresses T_C(x) from 4.1K down to T_C(x=0.5)=1.1K, with a QCP extrapolated to x_QCP~ 0.6. Magnetic susceptibility from T>30K indicates an effective moment slightly decreasing from \mu_eff=2.56\mu_B to 2.4\mu_B at x=0.5. These values and the paramagnetic temperature \theta_P~ -10K exclude significant Kondo screening effects. The T_C(x) reduction is accompanied by a weakening of the FM magnetization and the emergence of a specific heat C_m(T) anomaly at T*~ 1K, without signs of magnetism detected from AC-susceptibility. The magnetic entropy collected around 4K (i.e. the T_C of the x=0 sample) practically does not change with Ag concentration: S_m(4K)~ 0.8 Rln2, suggesting a progressive transfer of FM degrees of freedom to the non-magnetic (NM) component. No antecedent was found concerning any NM anomaly emerging from a FM system at such temperature. The origin of this anomaly is attributed to an 'entropy bottleneck' originated in the nearly divergent power law dependence for T>T*.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.