COPD is characterized by airflow limitation that is not fully reversible. The morphological basis for airflow obstruction results from a varying combination of obstructive changes in peripheral conducting airways and destructive changes in respiratory bronchioles, alveolar ducts, and alveoli. A reduction of vascularity within the alveolar septa has been reported in emphysema. Typical physiological changes reflect these structural abnormalities. Spirometry documents airflow obstruction when the FEV1/FVC ratio is reduced below the lower limit of normality, although in early disease stages FEV1 and airway conductance are not affected. Current guidelines recommend testing for bronchoreversibility at least once and the postbronchodilator FEV1/FVC be used for COPD diagnosis; the nature of bronchodilator response remains controversial, however. One major functional consequence of altered lung mechanics is lung hyperinflation. FRC may increase as a result of static or dynamic mechanisms, or both. The link between dynamic lung hyperinflation and expiratory flow limitation during tidal breathing has been demonstrated. Hyperinflation may increase the load on inspiratory muscles, with resulting length adaptation of diaphragm. Reduction of exercise tolerance is frequently noted, with compelling evidence that breathlessness and altered lung mechanics play a major role. Lung function measurements have been traditionally used as prognostic indices and to monitor disease progression; FEV1 has been most widely used. An increase in FVC is also considered as proof of bronchodilatation. Decades of work has provided insight into the histological, functional, and biological features of COPD. This has provided a clearer understanding of important pathobiological processes and has provided additional therapeutic options.

Chronic obstructive pulmonary disease

BRUSASCO, VITO;
2014-01-01

Abstract

COPD is characterized by airflow limitation that is not fully reversible. The morphological basis for airflow obstruction results from a varying combination of obstructive changes in peripheral conducting airways and destructive changes in respiratory bronchioles, alveolar ducts, and alveoli. A reduction of vascularity within the alveolar septa has been reported in emphysema. Typical physiological changes reflect these structural abnormalities. Spirometry documents airflow obstruction when the FEV1/FVC ratio is reduced below the lower limit of normality, although in early disease stages FEV1 and airway conductance are not affected. Current guidelines recommend testing for bronchoreversibility at least once and the postbronchodilator FEV1/FVC be used for COPD diagnosis; the nature of bronchodilator response remains controversial, however. One major functional consequence of altered lung mechanics is lung hyperinflation. FRC may increase as a result of static or dynamic mechanisms, or both. The link between dynamic lung hyperinflation and expiratory flow limitation during tidal breathing has been demonstrated. Hyperinflation may increase the load on inspiratory muscles, with resulting length adaptation of diaphragm. Reduction of exercise tolerance is frequently noted, with compelling evidence that breathlessness and altered lung mechanics play a major role. Lung function measurements have been traditionally used as prognostic indices and to monitor disease progression; FEV1 has been most widely used. An increase in FVC is also considered as proof of bronchodilatation. Decades of work has provided insight into the histological, functional, and biological features of COPD. This has provided a clearer understanding of important pathobiological processes and has provided additional therapeutic options.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/811873
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact