In the field of pharmaceutical processing, last generation automatic machines autonomously modify their behavior in order to achieve the best manufacturing quality and productivity despite ever changing process requirements. Mechatronics, as a synergistic integration of electro-mechanical equipment and software control logics, enables such adaptive self-optimizing behaviors. Unfortunately, due to the complex interactions between the different technologies, the final performance of these systems can be effectively validated and optimized only on a physical prototype, with limited possibilities to introduce possible design changes. Therefore, in order to enable validation/optimization of high performance machinery during engineering design stage, a mechatronic Virtual Prototyping (VP) technology is strongly needed. Within this context, the present work discusses a mechatronic VP method based on a Hardware-in-the-Loop, hybrid-process simulation approach, where interactive real-time simulations can effectively assess the real final performance under changing process scenarios. In particular, a case study concerning a high-speed automatic machines for pharmaceutical capsules filling is thoroughly discussed.
Hardware-in-the-Loop Mechatronic Virtual Prototyping of a High-Speed Capsule Filling Machine
BERSELLI, GIOVANNI
2014-01-01
Abstract
In the field of pharmaceutical processing, last generation automatic machines autonomously modify their behavior in order to achieve the best manufacturing quality and productivity despite ever changing process requirements. Mechatronics, as a synergistic integration of electro-mechanical equipment and software control logics, enables such adaptive self-optimizing behaviors. Unfortunately, due to the complex interactions between the different technologies, the final performance of these systems can be effectively validated and optimized only on a physical prototype, with limited possibilities to introduce possible design changes. Therefore, in order to enable validation/optimization of high performance machinery during engineering design stage, a mechatronic Virtual Prototyping (VP) technology is strongly needed. Within this context, the present work discusses a mechatronic VP method based on a Hardware-in-the-Loop, hybrid-process simulation approach, where interactive real-time simulations can effectively assess the real final performance under changing process scenarios. In particular, a case study concerning a high-speed automatic machines for pharmaceutical capsules filling is thoroughly discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.