The structure and organization of the Type I collagen microfibrils during mineral nanoparticle formation appear as the key factor for a deeper understanding of the biomineralization mechanism and for governing the bone tissue physical properties. In this work we investigated the dynamics of collagen packing during ex-vivo mineralization of ceramic porous hydroxyapatite implant scaffolds using synchrotron high resolution X-ray phase contrast micro-tomography (XPCμT) and synchrotron scanning micro X-ray diffraction (SμXRD). While XPCμT provides the direct 3D image of the collagen fibers network organization with micrometer spatial resolution, SμXRD allows to probe the structural statistical fluctuations of the collagen fibrils at nanoscale. In particular we imaged the lateral spacing and orientation of collagen fibrils during the anisotropic growth of mineral nanocrystals. Beyond throwing light on the bone regeneration multiscale process, this approach can provide important information in the characterization of tissue in health, aging and degeneration conditions.

Imaging collagen packing dynamics during mineralization of engineered bone tissue

MASTROGIACOMO, MADDALENA;
2015-01-01

Abstract

The structure and organization of the Type I collagen microfibrils during mineral nanoparticle formation appear as the key factor for a deeper understanding of the biomineralization mechanism and for governing the bone tissue physical properties. In this work we investigated the dynamics of collagen packing during ex-vivo mineralization of ceramic porous hydroxyapatite implant scaffolds using synchrotron high resolution X-ray phase contrast micro-tomography (XPCμT) and synchrotron scanning micro X-ray diffraction (SμXRD). While XPCμT provides the direct 3D image of the collagen fibers network organization with micrometer spatial resolution, SμXRD allows to probe the structural statistical fluctuations of the collagen fibrils at nanoscale. In particular we imaged the lateral spacing and orientation of collagen fibrils during the anisotropic growth of mineral nanocrystals. Beyond throwing light on the bone regeneration multiscale process, this approach can provide important information in the characterization of tissue in health, aging and degeneration conditions.
File in questo prodotto:
File Dimensione Formato  
8.Campi, 2015.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/810626
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact