Crystallization is a highly demanding and time-consuming task that causes a real bottle-neck in basic research. Great effort has been made to understand the factors and parameters that influence this process and to finely tune them to facilitate crystal growth. Different crystallization techniques have been proposed over the past decades, such as the classical vapor hanging drop method, its variant the sitting drop method, dialysis, cryo-temperature, gel, batch, and the innovative microgravity (space) techniques like free interface diffusion (FID) and counter-ion diffusion (CID). Here, we present a review of the strategies utilizing Langmuir-Blodgett (LB)-based nanotechnologies, and microgravity techniques for obtaining optimal high-quality crystals, as proven by molecular dynamics (MD) and bioinformatics approaches, namely using a clustering algorithm and protein alignment.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | A review of the strategies for obtaining high-quality crystals utilizing nanotechnologies and microgravity. |
Autori: | |
Data di pubblicazione: | 2014 |
Rivista: | |
Abstract: | Crystallization is a highly demanding and time-consuming task that causes a real bottle-neck in basic research. Great effort has been made to understand the factors and parameters that influence this process and to finely tune them to facilitate crystal growth. Different crystallization techniques have been proposed over the past decades, such as the classical vapor hanging drop method, its variant the sitting drop method, dialysis, cryo-temperature, gel, batch, and the innovative microgravity (space) techniques like free interface diffusion (FID) and counter-ion diffusion (CID). Here, we present a review of the strategies utilizing Langmuir-Blodgett (LB)-based nanotechnologies, and microgravity techniques for obtaining optimal high-quality crystals, as proven by molecular dynamics (MD) and bioinformatics approaches, namely using a clustering algorithm and protein alignment. |
Handle: | http://hdl.handle.net/11567/776233 |
Appare nelle tipologie: | 01.01 - Articolo su rivista |