Micro-channel cooling is gaining considerable attention as an alternative technique for cooling of high energy physics detectors. This is of particular interest for future trackers, where large silicon surfaces are involved and the amount of material crossed by particles must be drastically reduced. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices well adapted to different detector-specific applications. Three application cases are presented, which take into account different detector constraints and different refrigerant types: the first one being optimized for low temperature single-phase liquid flow, and the other two for evaporative cooling: one for low pressure/room temperature two-phase flow, and one for high pressure/low temperature two-phase flow.

Application of micro-channel cooling to the local thermal management of detectors electronics for particle physics

ROMAGNOLI, GIULIA
2013-01-01

Abstract

Micro-channel cooling is gaining considerable attention as an alternative technique for cooling of high energy physics detectors. This is of particular interest for future trackers, where large silicon surfaces are involved and the amount of material crossed by particles must be drastically reduced. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices well adapted to different detector-specific applications. Three application cases are presented, which take into account different detector constraints and different refrigerant types: the first one being optimized for low temperature single-phase liquid flow, and the other two for evaporative cooling: one for low pressure/room temperature two-phase flow, and one for high pressure/low temperature two-phase flow.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/772430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact