Notwithstanding the enforcement of ATEX EU Directives (94/9/EC of 23 March 1994) and safety management system application, explosions in the coal sector still claim lives and cause huge economic losses. Even a consolidated activity like coke dry distillation allows the opportunity of preventing explosion risk connected to fugitive emissions of coke oven gas. Considering accidental releases under semi-confined conditions, a simplified mathematical approach to the maximum allowed gaseous build-up is developed on the basis of the intrinsic hazards of the released compound. The results will help identifying and assessing low rate release consequences therefore to set-up appropriate prevention and control measures. The developed methodology was tested at the real-scale and validated by numerical computational fluid dynamics (CFD) simulations showing the effectiveness of the methodology to evaluate and mitigate the risk connected to confined hazardous releases. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Accidental Continuous Releases from Coal Processing in Semi-Confined Environment

PALAZZI, EMILIO;CURRO', FABIO;FABIANO, BRUNO
2013-01-01

Abstract

Notwithstanding the enforcement of ATEX EU Directives (94/9/EC of 23 March 1994) and safety management system application, explosions in the coal sector still claim lives and cause huge economic losses. Even a consolidated activity like coke dry distillation allows the opportunity of preventing explosion risk connected to fugitive emissions of coke oven gas. Considering accidental releases under semi-confined conditions, a simplified mathematical approach to the maximum allowed gaseous build-up is developed on the basis of the intrinsic hazards of the released compound. The results will help identifying and assessing low rate release consequences therefore to set-up appropriate prevention and control measures. The developed methodology was tested at the real-scale and validated by numerical computational fluid dynamics (CFD) simulations showing the effectiveness of the methodology to evaluate and mitigate the risk connected to confined hazardous releases. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/771589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 28
social impact