An estimation setting is considered, where a number of sensors transmit their observations of a physical phenomenon, described by one or more random variables, to a sink over noisy communication channels. The goal is to minimize a quadratic distortion measure (Minimum Mean Square Error - MMSE) under a global power constraint on the sensors’ transmissions. Linear MMSE encoders and decoders, parametrically optimized in encoders’ gains, Shannon–Kotel’nikov mappings, and nonlinear parametric functional approximators (neural networks) are investigated and numerically compared, highlighting subtle differences in sensitivity and achievable performance.

Neural approximations of analog joint source-channel coding

DAVOLI, FRANCO;
2015-01-01

Abstract

An estimation setting is considered, where a number of sensors transmit their observations of a physical phenomenon, described by one or more random variables, to a sink over noisy communication channels. The goal is to minimize a quadratic distortion measure (Minimum Mean Square Error - MMSE) under a global power constraint on the sensors’ transmissions. Linear MMSE encoders and decoders, parametrically optimized in encoders’ gains, Shannon–Kotel’nikov mappings, and nonlinear parametric functional approximators (neural networks) are investigated and numerically compared, highlighting subtle differences in sensitivity and achievable performance.
File in questo prodotto:
File Dimensione Formato  
SP-Letters-published.pdf

accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in versione editoriale
Dimensione 752.55 kB
Formato Adobe PDF
752.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/750396
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact