We study the solutions of the semiclassical Einstein equation in flat cosmological spacetimes driven by a massive conformally coupled scalar field. In particular, we show that it is possible to give initial conditions at finite time to get a state for the quantum field which gives finite expectation values for the stress–energy tensor. Furthermore, it is possible to control this expectation value by means of a global estimate on regular cosmological spacetimes. The obtained estimates permit writing a theorem about the existence and uniqueness of the local solutions encompassing both the spacetime metric and the matter field simultaneously. Finally, we show that one can always extend local solutions up to a point where the scale factor a becomes singular or the Hubble function H reaches a critical value H c = 180π/G, both of which correspond to a divergence of the scalar curvature R, namely a spacetime singularity.

Global Existence of Solutions of the Semiclassical Einstein Equation for Cosmological Spacetimes

PINAMONTI, NICOLA;SIEMSSEN, DANIEL
2015-01-01

Abstract

We study the solutions of the semiclassical Einstein equation in flat cosmological spacetimes driven by a massive conformally coupled scalar field. In particular, we show that it is possible to give initial conditions at finite time to get a state for the quantum field which gives finite expectation values for the stress–energy tensor. Furthermore, it is possible to control this expectation value by means of a global estimate on regular cosmological spacetimes. The obtained estimates permit writing a theorem about the existence and uniqueness of the local solutions encompassing both the spacetime metric and the matter field simultaneously. Finally, we show that one can always extend local solutions up to a point where the scale factor a becomes singular or the Hubble function H reaches a critical value H c = 180π/G, both of which correspond to a divergence of the scalar curvature R, namely a spacetime singularity.
File in questo prodotto:
File Dimensione Formato  
1309.6303.pdf

accesso aperto

Tipologia: Documento in Pre-print
Dimensione 653.97 kB
Formato Adobe PDF
653.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/717995
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact