Fullerene is scarcely soluble in most solvents, including alkanes. Yet, it has been shown that C60 dissolves in lipid bilayers, whose interior is chemically identical to alkanes. Here, we use molecular simulations to explain why lipid bilayers are better than alkanes at dissolving fullerene clusters. Fullerene aggregation is driven by entropy, but enthalpic contributions determine the difference between alkanes and bilayers. Surprisingly, confinement and chain alignment in the bilayer do not affect fullerene aggregation, while solvent density and the perturbation of solvent-solvent interactions are key factors.

Lipid Membranes as Solvents for Carbon Nanoparticles

ROSSI, GIULIA;
2014-01-01

Abstract

Fullerene is scarcely soluble in most solvents, including alkanes. Yet, it has been shown that C60 dissolves in lipid bilayers, whose interior is chemically identical to alkanes. Here, we use molecular simulations to explain why lipid bilayers are better than alkanes at dissolving fullerene clusters. Fullerene aggregation is driven by entropy, but enthalpic contributions determine the difference between alkanes and bilayers. Surprisingly, confinement and chain alignment in the bilayer do not affect fullerene aggregation, while solvent density and the perturbation of solvent-solvent interactions are key factors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/712967
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 57
social impact