It is well known that iterative algorithms for image deblurring that involve the normal equations show usually a slow convergence. A variant of the normal equations which replaces the conjugate transpose A^H of the system matrix A with a new matrix is proposed. This approach, which is linked with regularization preconditioning theory and reblurring processes, can be applied to a wide set of iterative methods; here we examine Landweber, Steepest descent, Richardson–Lucy and Image Space Reconstruction Algorithm. Several computational tests show that this strategy leads to a significant improvement of the convergence speed of the methods. Moreover it can be naturally combined with other widely used acceleration techniques.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Preconditioners for image restoration by reblurring techniques |
Autori: | |
Data di pubblicazione: | 2014 |
Rivista: | |
Handle: | http://hdl.handle.net/11567/660976 |
Appare nelle tipologie: | 01.01 - Articolo su rivista |