In this paper we analyze and characterize the saturated fractions of two-factor designs under the simple effect model. Using Linear algebra, we define a criterion to check whether a given fraction is saturated or not. We also compute the number of saturated fractions, providing an alternative proof of the Cayley's formula. Finally we show how, given a list of saturated fractions, Gini indexes of their margins and the associated state polytopes could be used to classify them.

Two-Factor Saturated Designs: Cycles, Gini Index, and State Polytopes.

Rapallo F.;ROGANTIN, MARIA PIERA
2014

Abstract

In this paper we analyze and characterize the saturated fractions of two-factor designs under the simple effect model. Using Linear algebra, we define a criterion to check whether a given fraction is saturated or not. We also compute the number of saturated fractions, providing an alternative proof of the Cayley's formula. Finally we show how, given a list of saturated fractions, Gini indexes of their margins and the associated state polytopes could be used to classify them.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/654776
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact