We consider a special type of signal restoration problem where some of the sampling data are not available. The formulation related to samples of the function and its derivative leads to a possibly large linear system associated to a nonsymmetric block Toeplitz matrix which can be equipped with a 2 × 2 matrix-valued symbol. The aim of the paper is to study the eigenvalues of the matrix. We first identify in detail the symbol and its analytical features. Then, by using recent results on the eigenvalue distribution of block Toeplitz matrixsequences, we formally describe the cluster sets and the asymptotic spectral distribution of the matrix-sequences related to our problem. The localization areas, the extremal behavior, and the conditioning are only observed numerically, but their behavior is strongly related to the analytical properties of the symbol, even though a rigorous proof is still missing in the block case.

Symbol approach in a signal-restoration problem involving block Toeplitz matrices

DEL PRETE, VINCENZA;DI BENEDETTO, FABIO;
2013

Abstract

We consider a special type of signal restoration problem where some of the sampling data are not available. The formulation related to samples of the function and its derivative leads to a possibly large linear system associated to a nonsymmetric block Toeplitz matrix which can be equipped with a 2 × 2 matrix-valued symbol. The aim of the paper is to study the eigenvalues of the matrix. We first identify in detail the symbol and its analytical features. Then, by using recent results on the eigenvalue distribution of block Toeplitz matrixsequences, we formally describe the cluster sets and the asymptotic spectral distribution of the matrix-sequences related to our problem. The localization areas, the extremal behavior, and the conditioning are only observed numerically, but their behavior is strongly related to the analytical properties of the symbol, even though a rigorous proof is still missing in the block case.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/609341
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact