Let V be the Veronese cubic surface in P9. We classify the projections of V to P8 whose coordinate rings are Koszul. In particular we obtain a purely theoretical proof of the Koszulness of the pinched Veronese, a result obtained originally by Caviglia using filtrations, deformations and computer assisted computations. To this purpose we extend, to certain complete intersections, results of Conca, Herzog, Trung and Valla concerning homological properties of diagonal algebras.

Koszul property of projections of the Veronese cubic surface

CONCA, ALDO
2013

Abstract

Let V be the Veronese cubic surface in P9. We classify the projections of V to P8 whose coordinate rings are Koszul. In particular we obtain a purely theoretical proof of the Koszulness of the pinched Veronese, a result obtained originally by Caviglia using filtrations, deformations and computer assisted computations. To this purpose we extend, to certain complete intersections, results of Conca, Herzog, Trung and Valla concerning homological properties of diagonal algebras.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/592950
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact