Antigenic drift, the evolutionary mechanism of influenza viruses, results in an increased susceptibility of vaccinated subjects against circulating viruses. New vaccines able to grant a broader and cross-reactive immune response against drifted influenza variants are needed. Several strategies were explored to enhance the immunogenicity of plain vaccines: adjuvants, carriers and intradermal administration of influenza vaccine emerge as a promising options. To evaluate the ability of a MF59-adjuvanted and intradermal influenza vaccine to elicit an effective antibody response against circulating viruses presenting antigenic patterns different from those of the vaccine strains, we compared antibody responses elicited by "implemented" vaccines and conventional intramuscular trivalent inactivated vaccine against heterologous circulating influenza A viruses. Different studies, simulating different epidemiological pictures produced by the natural antigenic drift of seasonal influenza viruses, highlighted the superior cross-reactivity of the antibodies elicited by MF59 and intradermal vaccines, compared with subunit or split vaccine against heterologous viruses.
Cross-protection against drifted influenza viruses: Options offered by adjuvanted and intradermal vaccines
ORSI, ANDREA;ANSALDI, FILIPPO;ICARDI, GIANCARLO;DURANDO, PAOLO
2013-01-01
Abstract
Antigenic drift, the evolutionary mechanism of influenza viruses, results in an increased susceptibility of vaccinated subjects against circulating viruses. New vaccines able to grant a broader and cross-reactive immune response against drifted influenza variants are needed. Several strategies were explored to enhance the immunogenicity of plain vaccines: adjuvants, carriers and intradermal administration of influenza vaccine emerge as a promising options. To evaluate the ability of a MF59-adjuvanted and intradermal influenza vaccine to elicit an effective antibody response against circulating viruses presenting antigenic patterns different from those of the vaccine strains, we compared antibody responses elicited by "implemented" vaccines and conventional intramuscular trivalent inactivated vaccine against heterologous circulating influenza A viruses. Different studies, simulating different epidemiological pictures produced by the natural antigenic drift of seasonal influenza viruses, highlighted the superior cross-reactivity of the antibodies elicited by MF59 and intradermal vaccines, compared with subunit or split vaccine against heterologous viruses.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.