In this letter, we target the problem of model selection for support vector classifiers through in-sample methods, which are particularly appealing in the small-sample regime. In particular, we describe the application of a trimmed hinge loss function to the Rademacher complexity andmaximal discrepancy-based in-sample approaches and show that the selected classifiers outperform the ones obtained with other in-sample model selection techniques, which exploit a soft loss function, in classifying microarray data.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | In-Sample Model Selection for Trimmed Hinge Loss Support Vector Machine |
Autori: | |
Data di pubblicazione: | 2012 |
Rivista: | |
Abstract: | In this letter, we target the problem of model selection for support vector classifiers through in-sample methods, which are particularly appealing in the small-sample regime. In particular, we describe the application of a trimmed hinge loss function to the Rademacher complexity andmaximal discrepancy-based in-sample approaches and show that the selected classifiers outperform the ones obtained with other in-sample model selection techniques, which exploit a soft loss function, in classifying microarray data. |
Handle: | http://hdl.handle.net/11567/522434 |
Appare nelle tipologie: | 01.01 - Articolo su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.