We construct an action for holomorphic Chern-Simons theory that couples the gauge field to off-shell gravitational backgrounds, comprising the complex structure and the (3,0)-form of the target space. Gauge invariance of the off-shell action is achieved by enlarging the field space to include an appropriate system of Lagrange multipliers, ghost and ghost-for-ghost fields. Both the BRST transformations and the BV action are compactly and neatly written in terms of superfields which include fields, backgrounds and their antifields. We show that the anti-holomorphic target space derivative can be written as a BRST-commutator on a functional space containing the anti-fields of both the dynamical fields and the gravitational backgrounds. We derive from this result a Ward identity that determines the anti-holomorphic dependence of physical correlators.
Holomorphic Chern-Simons theory coupled to off-shell Kodaira-Spencer gravity
Stefano Giusto;IMBIMBO, CAMILLO;
2012-01-01
Abstract
We construct an action for holomorphic Chern-Simons theory that couples the gauge field to off-shell gravitational backgrounds, comprising the complex structure and the (3,0)-form of the target space. Gauge invariance of the off-shell action is achieved by enlarging the field space to include an appropriate system of Lagrange multipliers, ghost and ghost-for-ghost fields. Both the BRST transformations and the BV action are compactly and neatly written in terms of superfields which include fields, backgrounds and their antifields. We show that the anti-holomorphic target space derivative can be written as a BRST-commutator on a functional space containing the anti-fields of both the dynamical fields and the gravitational backgrounds. We derive from this result a Ward identity that determines the anti-holomorphic dependence of physical correlators.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.