The mechanism of cable end angle-variation induced oscillations in the non-linear interactions between beams and cables in stayed-systems is first explained by a proposed analytical model. It is then verified by both experimental and finite element models. The non-linear interaction maximizes its effects for cable oscillations when inherent quadratic coupling between local and global modes produces energy transfer from low to high frequency vibrations by means of a one-to-two global-local autoparametric resonance. The response of the analytical model is fully described using a continuation method applied directly to the reduced two degree of freedom discrete model showing that, for a selected one-to-two global-local resonant system, primary harmonic excitation of the global mode produces large oscillations of the local mode at twice the excitation frequency. Detailed comparisons between the responses of the analytical model, experimental results and finite element simulations show excellent agreement both in the qualitative behaviour and in the calculated/measured response amplitudes.

One-to-two global-local interaction in a cable-stayed beam observed through analytical, finite element and experimental models

Lepidi, Marco;
2005

Abstract

The mechanism of cable end angle-variation induced oscillations in the non-linear interactions between beams and cables in stayed-systems is first explained by a proposed analytical model. It is then verified by both experimental and finite element models. The non-linear interaction maximizes its effects for cable oscillations when inherent quadratic coupling between local and global modes produces energy transfer from low to high frequency vibrations by means of a one-to-two global-local autoparametric resonance. The response of the analytical model is fully described using a continuation method applied directly to the reduced two degree of freedom discrete model showing that, for a selected one-to-two global-local resonant system, primary harmonic excitation of the global mode produces large oscillations of the local mode at twice the excitation frequency. Detailed comparisons between the responses of the analytical model, experimental results and finite element simulations show excellent agreement both in the qualitative behaviour and in the calculated/measured response amplitudes.
File in questo prodotto:
File Dimensione Formato  
1020 - Int.J. Non-Linear Mechanics 40(4) 2005 pp. 571-588.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 848.19 kB
Formato Adobe PDF
848.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/493942
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 75
social impact