Interactions between proteins and carbohydrates are involved in a large number of crucial biological events. Many efforts have been devoted to the design and synthesis of unnatural saccharides displaying high affinities towards targeted lectins. Among others, glycoside clusters have proven to be valuable tools for these recognition studies. However, the spatial arrangements of the sugar residues are a key issue in the design of high-affinity glycoclusters. Here, the affinities of linear and antenna- and calixarene-based galactoside clusters against two lectins, derived from Pseudomonas aeruginosa and Ricinus communis, have been compared by means of glycoarrays.
Design of Triazole-Tethered Glycoclusters Exhibiting Three Different Spatial Arrangements and Comparative Study of their Affinities towards PA-IL and RCA 120 by Using a DNA-Based Glycoarray
MONI, LISA;
2009-01-01
Abstract
Interactions between proteins and carbohydrates are involved in a large number of crucial biological events. Many efforts have been devoted to the design and synthesis of unnatural saccharides displaying high affinities towards targeted lectins. Among others, glycoside clusters have proven to be valuable tools for these recognition studies. However, the spatial arrangements of the sugar residues are a key issue in the design of high-affinity glycoclusters. Here, the affinities of linear and antenna- and calixarene-based galactoside clusters against two lectins, derived from Pseudomonas aeruginosa and Ricinus communis, have been compared by means of glycoarrays.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.