Preventive treatment with cannabinoid agonists has been reported to reduce the infarct size in a mouse model of myocardial ischemia/reperfusion. Here we investigated the possible cardioprotective effect of selective CB(2) cannabinoid receptor activation during ischemia. We performed left coronary artery ligature in C57Bl/6 mice for 30 min, followed by 24 h of reperfusion. Five minutes before reperfusion, mice received intraperitoneal injection of the CB(2) selective agonist JWH-133 (20 mg/kg) or vehicle. Infarct size was assessed histologically and by cardiac troponin I (cTnI) ELISA. Immunohistochemical analysis of leukocyte infiltration, oxidative stress in situ quantification, real-time RT-PCR analysis of inflammatory mediators as well as western blots for kinase phosphorylation was also performed. In addition, we studied chemotaxis and integrin expression of human neutrophils in vitro. JWH-133 significantly reduced the infarct size (I/area at risk: 19.27%+/-1.91) as compared to vehicle-treated mice (31.77%+/-2.7). This was associated with a reduction of oxidative stress and neutrophil infiltration in the infarcted myocardium, whereas activation of ERK 1/2 and STAT-3 was increased. Preinjection of PI3K inhibitor LY294002, MEK 1/2 inhibitor U0126 and JAK-2 inhibitor AG-490 partially abrogated the JWH-133 mediated infarct size reduction. No changes in cardiac CXCL1, CXCL2, CCL3, TNF-alpha, and ICAM-1 expression levels were found. Furthermore, JWH-133 inhibited the TNF-alpha induced chemotaxis and integrin CD18/CD11b (Mac-1) upregulation on human neutrophils. Our data suggest that JWH-133 administration during ischemia reduces the infarct size in a mouse model of myocardial ischemia/reperfusion through a direct cardioprotective activity on cardiomyocytes and neutrophils.

CB(2) cannabinoid receptor activation is cardioprotective in a mouse model of ischemia/reperfusion.

MONTECUCCO, FABRIZIO;BERTOLOTTO, MARIA BIANCA;
2009-01-01

Abstract

Preventive treatment with cannabinoid agonists has been reported to reduce the infarct size in a mouse model of myocardial ischemia/reperfusion. Here we investigated the possible cardioprotective effect of selective CB(2) cannabinoid receptor activation during ischemia. We performed left coronary artery ligature in C57Bl/6 mice for 30 min, followed by 24 h of reperfusion. Five minutes before reperfusion, mice received intraperitoneal injection of the CB(2) selective agonist JWH-133 (20 mg/kg) or vehicle. Infarct size was assessed histologically and by cardiac troponin I (cTnI) ELISA. Immunohistochemical analysis of leukocyte infiltration, oxidative stress in situ quantification, real-time RT-PCR analysis of inflammatory mediators as well as western blots for kinase phosphorylation was also performed. In addition, we studied chemotaxis and integrin expression of human neutrophils in vitro. JWH-133 significantly reduced the infarct size (I/area at risk: 19.27%+/-1.91) as compared to vehicle-treated mice (31.77%+/-2.7). This was associated with a reduction of oxidative stress and neutrophil infiltration in the infarcted myocardium, whereas activation of ERK 1/2 and STAT-3 was increased. Preinjection of PI3K inhibitor LY294002, MEK 1/2 inhibitor U0126 and JAK-2 inhibitor AG-490 partially abrogated the JWH-133 mediated infarct size reduction. No changes in cardiac CXCL1, CXCL2, CCL3, TNF-alpha, and ICAM-1 expression levels were found. Furthermore, JWH-133 inhibited the TNF-alpha induced chemotaxis and integrin CD18/CD11b (Mac-1) upregulation on human neutrophils. Our data suggest that JWH-133 administration during ischemia reduces the infarct size in a mouse model of myocardial ischemia/reperfusion through a direct cardioprotective activity on cardiomyocytes and neutrophils.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/448963
Citazioni
  • ???jsp.display-item.citation.pmc??? 56
  • Scopus 154
  • ???jsp.display-item.citation.isi??? 147
social impact