OBJECTIVE: Evasins (chemokine-binding proteins) have been shown to selectively neutralize chemokine bioactivity. We investigated the potential benefits of Evasin-3 on mouse myocardial ischemia/reperfusion injury. METHODS AND RESULTS: In vivo and ex vivo (Langendorff model) left coronary artery ligature was performed in C57Bl/6 mice. Coronary occlusion was maintained for 30 minutes, followed by different times (up to 24 hours) of reperfusion. Five minutes after coronary occlusion, mice received 1 intraperitoneal injection of Evasin-3 or vehicle. Infarct size was assessed histologically and by serum cardiac troponin I ELISA. In vitro neutrophil chemotaxis, immunohistology, oxidative stress quantification, real-time RT-PCR analysis of leukocyte chemoattractants, and Western blots for cardioprotective intracellular pathway activation were performed. Evasin-3 reduced infarct size and cardiac troponin I levels compared with vehicle. This effect was associated with the reduction of neutrophil infiltration and reactive oxygen species production within the infarcted myocardium. Evasin-3 did not reduce infarct size in the absence of circulating neutrophils (Langendorff model). Evasin-3 did not influence the activation of intracellular cardioprotective pathways or the expression of leukocyte chemoattractants during early phases of reperfusion. CONCLUSIONS: Single administration of Evasin-3 during myocardial ischemia significantly reduced infarct size by preventing CXC chemokine-induced neutrophil recruitment and reactive oxygen species production in myocardial ischemia/reperfusion.

Single administration of the CXC chemokine-binding protein Evasin-3 during ischemia prevents myocardial reperfusion injury in mice.

MONTECUCCO, FABRIZIO;
2010

Abstract

OBJECTIVE: Evasins (chemokine-binding proteins) have been shown to selectively neutralize chemokine bioactivity. We investigated the potential benefits of Evasin-3 on mouse myocardial ischemia/reperfusion injury. METHODS AND RESULTS: In vivo and ex vivo (Langendorff model) left coronary artery ligature was performed in C57Bl/6 mice. Coronary occlusion was maintained for 30 minutes, followed by different times (up to 24 hours) of reperfusion. Five minutes after coronary occlusion, mice received 1 intraperitoneal injection of Evasin-3 or vehicle. Infarct size was assessed histologically and by serum cardiac troponin I ELISA. In vitro neutrophil chemotaxis, immunohistology, oxidative stress quantification, real-time RT-PCR analysis of leukocyte chemoattractants, and Western blots for cardioprotective intracellular pathway activation were performed. Evasin-3 reduced infarct size and cardiac troponin I levels compared with vehicle. This effect was associated with the reduction of neutrophil infiltration and reactive oxygen species production within the infarcted myocardium. Evasin-3 did not reduce infarct size in the absence of circulating neutrophils (Langendorff model). Evasin-3 did not influence the activation of intracellular cardioprotective pathways or the expression of leukocyte chemoattractants during early phases of reperfusion. CONCLUSIONS: Single administration of Evasin-3 during myocardial ischemia significantly reduced infarct size by preventing CXC chemokine-induced neutrophil recruitment and reactive oxygen species production in myocardial ischemia/reperfusion.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/448944
Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 64
social impact